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Abstract

A nonlinear kinetic law and its corresponding variational principle are
developed for solid-state diffusion under a large thermodynamic driving force.
These are used to model the sintering of spherical particles. It is demonstrated
that the classical linear diffusion law significantly underpredicts the sintering rate
for nanosized particles.

} 1. Introduction

It has often been assumed that the diffusive flux and the driving force for solid-
state diffusion obey a linear relationship (Shewmon 1963). The linear kinetic law is,
however, not valid if the thermodynamic driving force becomes very large. A typical
example is the sintering of nanosized particles where a large driving force may exist.
Hague and Mayo (1995) suggested an exponential driving force in their sintering
model for nanosized particles. Campbell et al. (2002) noticed the same problem,
although the main theme of their work was to demonstrate that the specific surface
energy is no longer a constant for very small particles (less than 2.5 nm in diameter).
These workers, however, did not re-examine the fundamentals of the diffusion law.
In a textbook on electronic thin films, Tu at al. (1992) touched on the issue of large
driving forces but did not study this further because their book deals mainly with
small driving forces. In this paper we re-examine the kinetic law for solid-state
diffusion under very large driving forces. A variational solution technique is devel-
oped for the nonlinear kinetic law and applied to the classical sintering problem.
Many workers, including Johnson (1969), Coble (1970), Bouvard and McMeeking
(1996) and Pan et al. (1998, 2003), have modelled sintering using linear kinetic laws.
It is therefore an ideal problem to demonstrate the difference between the linear and
the nonlinear kinetic laws.

} 2. Kinetic law for large driving force

We consider solid-state diffusion by the vacancy mechanism. For simplicity, we
formulate the kinetic law in one dimension first and then extend it to higher dimen-
sions later. Let J represent the atomic diffusion flux (number of atoms passing through
a unit area per second), Catom the atomic concentration (number of atoms per unit
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volume), V the atomic drifting velocity, f the atomic jumping frequency and a the
atomic spacing. Then we have

J ¼ CatomV ¼ Catom af : ð1Þ

Let � represent the chemical potential of an atom, which is the energy change on
adding one atom to the solid from a ‘zero-energy pool’, and F the driving force
acting on a single atom. We can write

F ¼ �
@�

@x
: ð2Þ

If the driving force is zero, an atom can still exchange its position with a neigh-
bouring vacancy by overcoming an energy barrier, known as the activation energy
�Gm. The Boltzmann law states that the probability of finding an atom in a given
position varies exponentially with the negative of the potential energy of that posi-
tion divided by kT. The exchange frequency can be written as the product of an
attempt frequency (the natural vibration frequency of the solid) and the probability
of surmounting the barrier:

fF ¼ 0 ¼ fDebye exp
��Gm

kT

� �
, ð3Þ

where k is the Boltzmann constant, T the absolute temperature and fDebye the Debye
frequency, which is a fundamental parameter of the solid (of the order of 1013Hz for
metals). The probability of finding a vacancy somewhere in the solid is given by

N eq
V

NL

¼ exp
��GV

kT

� �
, ð4Þ

where �GV is the formation energy of a vacancy, that is the energy change when we
take an atom from inside the solid and put it on the surface (e.g. N eq

V =NL�10�4 for
aluminium near its melting point of 660�C).

Diffusion occurs when a driving force F moves an atom in the direction of the
force. Following Tu et al. (1992), the jumping frequency can be obtained as

f ¼ 2
fF ¼ 0

nc

Neq
V

NL

sinh
aF

2kT

� �
, ð5Þ

where nc is the coordination number of an atom (number of nearest neighbours) and
a is the atomic spacing. The diffusion flux is thus expressed as

J ¼ Csolid af ¼ Csolid2 a
fF ¼ 0

Nc

Neq
V

NL

� �
sinh

aF

2kT

� �
:

Using the usual definition for the diffusion coefficient (Shewmon 1963):

D ¼ a2
fF ¼ 0

nc

N eq
V

NL

� �
¼ a2

fDebye

nc
exp

��Gm ��GV

kT

� �
¼ D0 exp

��GD

kT

� �
, ð6Þ

and noting that Catom¼ 1/O, where O is the atomic volume, we obtain the kinetic law

J ¼
2D

aO
sinh

aF

2kT

� �
¼

2D

aO
sinh

a

2kT
�
@�

@x

� �� �
: ð7Þ

If aF4 kT, sinh (aF/2kT )� aF/2kT, and then the nonlinear kinetic law is reduced to
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the well-known linear law:

J ¼
D

kTO
F ¼ �

D

kTO
@�

@x
: ð8Þ

In three dimensions, the kinetic law (7) can be rewritten as

J ¼
2D

aO
sinh

a Fj j

2kT

� �
F

jF j
, ð9Þ

where F¼�J�. The formulation is completed by the well-known expressions for the
chemical potential

� ¼ �O� ð10Þ

at a grain boundary, where � is the stress normal to the grain boundary, and

� ¼ �O�s�, ð11Þ

at a free surface, where �s is the specific surface energy and � the principal curvature
of the free surface.

The above derivation of equations (6) and (7) contains many idealizations to the
crystalline solid. In general, the diffusion coefficient D and the atomic spacing a in
equations (7) and (9) should be treated as experimentally measured quantities.

} 3. Magnitude of the driving force

In order to illustrate the error caused by the linearization, sinh (aF/2kT )�
aF/2kT, we examine the magnitude of the term aF/2kT for the sintering problem
of two spherical particles under the framework of Coble’s model. Coble (1970)
assumed that boundary diffusion is the rate-controlling mechanism for sintering
and used a linear diffusion law. Let R represent the radius of the particles, c the
radius of the contact neck (the grain boundary) between the two particles, � the
radius of curvature of the particles at the contact neck and y the shrinkage between
the two particles. Coble assumed that radius of the curvature and the shrinkage are
the same and proposed an approximate relationship between �, c and R which has
been shown later to be valid using detailed numerical studies by Bouvard and
McMeeking (1996) and Pan et al. (1998):

� ¼ y ¼
c2

4R
: ð12Þ

The chemical potential where the grain boundary meets the particle surface is given
by

� ¼ ��sO� ¼ ��sO
1

�
�
1

c

� �
¼ ��sO 4

R

c2
�
1

c

� �
, ð13Þ

and the driving force for grain-boundary diffusion can be estimated as

F ¼ �
��

�r
� �

�� 0

c=2
¼ 2�s ð4R� cÞ

O
c3

: ð14Þ

Using a¼ 0.5 nm, �s¼ 1 Jm�2, O¼ 0.02 nm3 and T¼ 1160K, which is half the melt-
ing temperature of alumina, figure 1 shows the ratio of [sinh (aF/2kT )]/(aF/2kT )
as a function of c/R for a range of values of particle radius R. From the figure
it is evident that the linearization causes huge errors in calculating the driving
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force over a wide range of c/R for particles of radius R430 nm. For particles with
R�100 nm, however, the linearization is generally acceptable. A unique feature of
the nonlinear kinetic law is that an atomic length scale, a, enters the equation.

} 4. Virtual power and variational principles

Variational calculus has proved to be a convenient technique for solving prob-
lems governed by the linear diffusion law (Suo 1996, Pan et al. 1997, Cocks et al.
1999). Here we develop a virtual-power principle and a variational principle for the
nonlinear diffusion problem. Only grain-boundary and free-surface diffusions are
considered, since volume diffusion is almost irrelevant to nanosized particles. For
the solid-state diffusion problem, the virtual-power principle can be expressed as the
energy balance over a virtual variation dV in the atomic drifting velocity in the
following format:

X
all atoms

F dV
h dA

O

� �
þ

X
openings

� dJ ðh d�Þ þ d
dE

dt

� �
¼ 0: ð15Þ

The first term in equation (15) is the virtual power of the driving force F which can be
rewritten as

X
all atoms

F dV
h dA

O

� �
¼

Z
GBþFS

1

O
F d ðhVÞ dA ¼

Z
GBþFS

1

O
F djh dA, ð16Þ

in which dA is a small element of the interface (grain boundary or free surface), GB
represents grain boundaries, FS represents the free surfaces, h is the thickness of the
diffusion layer, and jh¼ hV¼ hOJ, which is a more convenient definition of the
diffusive flux for grain-boundary and surface diffusions (volume of matter moving
along the diffusion layer per unit time). The second term in equation (15) is included
here for open systems and represents the virtual energy change due to atoms coming
into or moving out of the system. This term can be rewritten as

X
openings

� dJ ðh dGÞ ¼
Z
G

1

O
� d ðhOJÞ dG ¼

Z
G

1

O
� djh dG, ð17Þ

Figure 1. Ratio of [sinh (aF/2kT )]/(aF/2kT ) for the sintering of two particles as a function
of the ratio between the neck size c and the particle radius R.
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where � represents the opening parts of the system. The third term in equation (15) is
the virtual change of the total free-energy rate of the system. We can write

E ¼

Z
GB

�gb dAþ

Z
FS

�s dA, ð18Þ

where �gb and �s represent the specific energies for a grain boundary and the free
surface respectively. From equation (7) we have

F ¼
2kT

a
arcsinh

a

2Dh
jh

� �
: ð19Þ

Substituting equations (16)–(19) into equation (15) results in the following final
version of the virtual-power principle:

Z
GBþFS

2kT

aO
arcsinh

a

2Dh
jh

� �
ðdjhÞ dAþ

Z
G

1

O
� djh dGþ d

dE

dt

� �
¼ 0, ð20Þ

which can be rewritten as

dP ¼ 0, ð21Þ

where P is given by

P ¼
2kT

aO

Z
GBþFS

�
jh arcsinh

�
a

2Dh
jh

�
�

��
2Dh

a

�2

þ j2h

�1=2�
dA

þ

Z
openings

1

O
�jh dGþ

dE

dt
: ð22Þ

Equations (21) and (22) provide a variational principle for solving the solid-state
diffusion problem.

} 5. A nonlinear solution for coble’s sintering problem

Coble (1970) solved the sintering problem using the linear kinetic law and pro-
vided an expression for the shrinkage of the two particles as a function of time.
Coblenz et al. corrected an error in Coble’s original expression which was later
confirmed by Bouvard and McMeeking (1996) using numerical simulations. The
correct expression is given by (Bouvard and McMeeking 1996)

y

R

� �3
¼ 3

�sDhO
kTR4

t: ð23Þ

Here the same problem is solved using the present nonlinear diffusion law. For the
circular contact neck (grain boundary), mass conservation provides a relationship
between the grain-boundary diffusion flux jgb and the separation velocity Vgb

between the two particles:

jgb ¼ �
Vgbr

2
, ð24Þ

Solid-state diffusion under a large driving force 307

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

ir
m

in
gh

am
] 

at
 0

0:
24

 2
0 

M
ar

ch
 2

01
5 



www.manaraa.com

where r is the coordinate from the centre of the neck. For the two-particle system, the
free-energy rate can be written as

dE

dt
¼ ð2�c�s sinCÞVgb, ð25Þ

where � is the dihedral angle. Coble (1970) considered only grain-boundary diffu-
sion which is equivalent to treating the grain boundary as an open system. The
boundary condition for the chemical potential � at the edge of the contact neck is
given by equation (13). Substituting equations (13), (24) and equation (25) into
equation (20) yields

�
2kT

aO

Z c

0

r2 arcsinh �
aVgb

4Dh
r

� �
drþ c2�s�þ 2c�s sinC ¼ 0: ð26Þ

For a known value of the neck radius c, equation (26) is a nonlinear equation in
terms of Vgb which can be solved using the Newton–Raphson method. From equa-
tion (12) we obtain

dy

dt
¼

c

2R

dc

dt
¼ �

1

2
Vgb: ð27Þ

Equations (26) and (27) are numerically integrated using the direct Euler method
to provide time evolutions for the neck radius c and the shrinkage y.

Figures 2(a)–(d ) show the comparison between the nonlinear and the linear
solutions for y/R as functions of time for four different particle radii. The material
data used in the comparison are a¼ 0.5 nm, �s¼ 1 Jm�2, �gb¼ �s/3, O¼ 0.02 nm3

and T¼ 1160K. The time shown in the figure is normalized such that �tt ¼ tDh.
Because of the log–log scale used for these figures, the linear solution given by
equation (23) appears as straight lines for each of the cases, while the nonlinear
solutions appear on the top of each of the straight lines. All the cases terminate
at a common value of y/R¼ 0.15 which corresponds to a c/R value of 0.8. It can
be seen from the figures that the nonlinear solution agrees with the linear solu-
tion for large particles (R¼ 1000 nm, for example), especially at the later stage of

Figure 2. Comparison between the linear solution (- - - -) and the nonlinear solutions (——)
for the shrinkage between two spherical particles as functions of time.
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Figure 2. Continued.
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sintering where the driving force becomes smaller. For nanosized particles however,
the linear diffusion law significantly underpredicts the sintering rate.

In general, surface diffusion may become as important as grain-boundary diffu-
sion. The virtual-power principle or the variational principle developed in the present
study can be used to construct finite-element schemes similar to those for the linear
problems (Pan et al. 1997). A full numerical solution can then be obtained for
microstructure evolutions in which the thermodynamic driving force is large and
both surface diffusion and grain-boundary diffusion control the evolution.
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